Electron Spin Resonance Study of $Mn(CN)_{z}NO^{2-}$ in a Single Crystal

By P. T. MANOHARAN and HARRY B. GRAY

(Department of Chemistry, Columbia University, New York, New York 10027)

MCNEIL, RAYNOR, and SYMONS recently reported the e.s.r. spectra of Mn(CN)₅NO²⁻ in liquid solutions at room temperature and in frozen glasses at $77^{\circ}\kappa$ ^{1,2} In their experiments they did not detect any hyperfine splittings due to ¹⁴N of the NO group and estimated that both A_1 ⁽¹⁴N) and $A_{\parallel}(^{14}N)$ are smaller than 1.9 gauss. This is a rather surprising result since the ¹⁴N hyperfine splittings are easily detected in the isoelectronic $Cr(CN)_5 NO^{3-}$ complex,^{1,3} with $A_1(^{14}N) = 7.10$ and $A_{\parallel}(^{14}N) = 2.89$ gauss. Since the ⁵⁵Mn hyperfine lines in Mn(CN)₅NO²⁻ are very broad, ¹⁴N hyperfine splittings larger than 1.9 gauss could be hidden. Thus, we have examined e.s.r. spectra of $Mn(CN)_5NO^{2-}$ in a single crystal.

Analytically pure samples of K₂Mn(CN)₅NO were prepared according to a literature procedure.⁴ Our repeated bulk-susceptibility measurements on a solid sample of $K_2Mn(CN)_5NO$ give $\mu_{eff} =$ 1.73 B.M., indicating $S = \frac{1}{2}$ with no abnormal magnetic behaviour. Thus the magnetic moment of 0.50 B.M. reported earlier⁴ for solid $K_2Mn(CN)_5NO$ at 300° k is apparently in error. All the e.s.r. measurements were made at room temperature on a small crystal of Na₂Fe(CN)₅NO,- $2H_{0}O^{5}$ containing approximately 0.3% K₂Mn(CN)₅NO. The splittings due to ¹⁴N from NO are well resolved, particularly for large Θ , where Θ is the angle between the symmetry axis NC-Mn-NO and the applied magnetic field H. Thus the hyperfine splittings due to ¹⁴N were obtained for Mn(CN)₅NO²⁻. The results of our e.s.r. study of $Mn(CN)_5NO^{2-}$ in a single crystal are given in the Table and compared with the corresponding values for Cr(CN)₅NO³⁻ given by Kuska and Rogers.³

McNeil and his co-workers interpreted their e.s.r. results on the basis of different ground-state electronic structures for the isoelectronic Cr(CN)₅NO³⁻ and Mn(CN)₅NO²⁻ complexes.1 The results in the Table show that there is no need to resort to different electronic structures for Cr(CN)₅NO³⁻ and Mn(CN)₅NO²⁻. Indeed, the striking similarities in the symmetries of the g and A tensors and the ratios g_{\perp}/g_{\parallel} and $A_{\parallel}/A_{\parallel}$ strongly support the assignment^{3,7,8} of the same ground state for both complexes.

The calculated ground state for both $Cr(CN)_5 NO^{3-}$ and $Mn(CN)_5 NO^{2-}$ is $e^4 b_2^{-1} = {}^2B_2$. Mixing of the ground state and the low excited

TABLE

Electron Spin Resonance Results for Mn(CN)₅NO²⁻ and Cr(CN)₅NO³⁻ in Single Crystals

A values	ın gauss	
$M_{\rm P}(CN)$	NO2-a	C

		1	$Mn(CN)_{5}NO^{2-a}$	Cr(CN) ₅ NO ^{3- b}
g_{\parallel}			1.9922	1.9722
g'i			2.0311	2.0045
g _{av}	••	••	2.0181	1.9937
A (55M1	n or ⁵³ C	r)	159.98	$33 \cdot 4$
A 1 (55 M	n or ⁵³ (Cr)	36.6	11.9
Aav		· • •	77.72	19.1
A (14N)			1.91	2.89
A1(14N))		4.75	7.10
Aav (14N	$()^c$	••	3.80	5.70

- a The g and A values were corrected by solving the spin Hamiltonians to second order; see ref. 6. b From ref. 3.
- c Calculated from A_{\parallel} and A_{\perp} ; solution value for Cr(CN)₅NO³⁻ is 5.32 gauss (ref. 10).

- ¹ D. A. C. McNeil, J. B. Raynor, and M. C. R. Symons, Proc. Chem. Soc., 1964, 364.
 ² D. A. C. McNeil, J. B. Raynor, and M. C. R. Symons, J. Chem. Soc., 1965, 410.
 ³ H. A. Kuska and M. T. Rogers, J. Chem. Phys., 1965, 42, 3034.
 ⁴ F. A. Cotton, R. R. Monchamp, R. J. M. Henry, and R. C. Young, J. Inorg. Nuclear Chem., 1959, 10, 28.
 ⁵ P. T. Manoharan and W. C. Hamilton, Inorg. Chem., 1963, 2, 1043.
 ⁶ B. Bleaney, Phil. Mag., 1951, 42, 441.
 ⁷ P. T. Manoharan and H. B. Gray, I. Amar. Chem. Soc., 1965, in the process.

- ⁷ P. T. Manoharan and H. B. Gray, J. Amer. Chem. Soc., 1965, in the press.
 ⁸ H. B. Gray, P. T. Manoharan, R. J. Pearlman, and R. Riley, Chem. Comm., 1965, 62.

state $e^3b_2^2 = {}^2E via$ spin-orbit coupling places unpaired spin density on the NO, since the e(xz,yz) molecular orbital includes a contribution from π^*NO . The fact that the $A_{av}({}^{14}N)$ for $Cr(CN)_5NO^{3-}$ is larger than $A_{av}({}^{14}N)$ for $Mn(CN)_5NO^{2-}$ indicates that there is more π^*NO character in the filled e(xz,yz) molecular orbital in the $Cr(CN)_5NO^{3-}$ complex. This result is consistent with quantitative calculations similar to the one performed? on Fe(CN)_5NO^{2-} which show that the e(xz,yz) orbital is $60\% \pi^*NO$ for $Cr(CN)_5NO^{3-}$ and only $42\% \pi^*NO$ for $Mn(CN)_5NO^{2-}$. Also, comparison of $\bar{\nu}$ (N-O)

⁹ W. P. Griffith, J. Lewis, and G. Wilkinson, J. Chem. Soc., 1959, 872. ¹⁰ H. A. Kuska and M. T. Rogers, J. Chem. Phys., 1964, 40, 910. 325

values for $Cr(CN)_{5}NO^{3-}$ (1645 cm.⁻¹)⁹ and $Mn(CN)_{5}NO^{2-}$ (1885 cm.⁻¹)⁴ indicates a higher degree of $M \rightarrow \pi^*NO$ interaction in $Cr(CN)_5NO^{3-}$.

Thus, we conclude that the $e(xz,yz) < b_2(xy) < \pi^* \text{NO} < b_1(x^2-y^2) < a_1(z^2)$ ordering of molecular orbitals obtained from the quantitative calculations of $M(\text{CN})_5 \text{NO}^{n-}$ systems and supported by extensive optical spectral work⁷,⁸ on Fe(CN)₅NO²⁻ gives a satisfactory accounting of the ground states of $Mn(\text{CN})_5 \text{NO}^{2-}$ and $Cr(\text{CN})_5 \text{NO}^{3-}$.

(Received, June 14th, 1965.)